일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 하이퍼 파라미터
- 자기소개서
- pandas
- 퀀트
- 데이터사이언스학과
- 퀀트 투자 책
- 주가데이터
- 판다스
- 주요 파라미터
- 하이퍼 파라미터 튜닝
- AutoML
- 랜덤포레스트
- 데이터분석
- 파이썬
- 데이터사이언스
- 코딩테스트
- 커리어전환
- 사이킷런
- 경력기술서 첨삭
- 파라미터 튜닝
- 이력서 첨삭
- 데이터 사이언티스트
- 경력 기술서
- 머신러닝
- sklearn
- 베이지안 최적화
- 데이터사이언티스트
- 대학원
- 주식데이터
- 데이터 사이언스
- Today
- Total
목록하이퍼 파라미터 (3)
GIL's LAB
이번 포스팅에서는 이진 분류를 위한 서포트 벡터 머신(SVM)의 하이퍼 파라미터를 튜닝하는 방법에 대해 알아보겠습니다. 커널까지 비교하려하다보니 시간이 너무 오래 걸릴 것 같아, rbf 커널을 갖는 SVM으로 한정했습니다. SVM은 sklearn.svm.SVC를 이용해서 구현하겠습니다. 하이퍼 파라미터 sklearn.svm.SVC의 주요 하이퍼 파라미터(함수 인자)는 다음과 같습니다. 하이퍼 파라미터에 대한 설명은 scikit learn의 공식 문서를 참고해서 작성했습니다. C: 정규화 파라미터로, 이 값이 클수록 정규화 강도가 약합니다. L2 페널티이며, 기본값은 1입니다. kernel: 커널을 결정하며,'linear' (선형), 'poly' (다항), 'rbf', 'sigmoid' (시그모이드) 중 ..
이번 포스팅에서는 회귀를 위한 랜덤포레스트의 하이퍼 파라미터를 튜닝하는 방법에 대해 알아보겠습니다. 랜덤포레스트는 sklearn.ensemble.RandomForestRegressor를 이용해서 구현하겠습니다. 하이퍼 파라미터 sklearn.ensemble.RandomForestRegressor의 주요 하이퍼 파라미터(함수 인자)는 다음과 같습니다. 하이퍼 파라미터에 대한 설명은 scikit learn의 공식 문서를 참고해서 작성했습니다. n_estimators: 랜덤포레스트를 구성하는 결정나무의 개수로 기본값은 100입니다. criterion: 결정 나무의 노드를 분지할 때 사용하는 불순도 측정 방식으로, 'mse', ',mae' 중 하나로 입력합니다. 최근 버전(1.2)에서는 각각 "squared_e..
이번 포스팅에서는 이진 분류를 위한 랜덤포레스트의 하이퍼 파라미터를 튜닝하는 방법에 대해 알아보겠습니다. 랜덤포레스트는 sklearn.ensemble.RandomForestClassifier를 이용해서 구현하겠습니다. 하이퍼 파라미터 sklearn.ensemble.RandomForestClassifier의 주요 하이퍼 파라미터(함수 인자)는 다음과 같습니다. 하이퍼 파라미터에 대한 설명은 scikit learn의 공식 문서를 참고해서 작성했습니다. n_estimators: 랜덤포레스트를 구성하는 결정나무의 개수로 기본값은 100입니다. criterion: 결정 나무의 노드를 분지할 때 사용하는 불순도 측정 방식으로, 'gini', 'entropy' 중 하나로 입력합니다. 'gini'는 지니 불순도(Gin..