일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 데이터사이언스
- 머신러닝
- 주식데이터
- 데이터 사이언티스트
- 코딩테스트
- 데이터사이언티스트
- 데이터분석
- pandas
- 베이지안 최적화
- 파라미터 튜닝
- 경력 기술서
- AutoML
- 커리어전환
- 대학원
- 퀀트
- 이력서 첨삭
- 하이퍼 파라미터
- 주가데이터
- 파이썬
- 자기소개서
- 랜덤포레스트
- 판다스
- 사이킷런
- 데이터사이언스학과
- sklearn
- 경력기술서 첨삭
- 하이퍼 파라미터 튜닝
- 퀀트 투자 책
- 데이터 사이언스
- 주요 파라미터
- Today
- Total
목록쉐이플릿 (2)
GIL's LAB
개요 이번 실험에서는 주가가 상승하기 전에 보이는 새로운 시계열 패턴을 찾아보고자 한다. 그러니까 대표적인 주가 상승 패턴 중 하나인 역헤드엔숄더 패턴처럼, 주가가 상승하기 전에 보이는 저런 패턴들을 찾는 것이 이번 실험의 목표이다. 즉, 주가가 크게 오르기 전의 주가 데이터와 그렇지 않은 주가 데이터를 가지고, 주가가 크게 오르기 전의 주가 데이터에서만 주로 발생하는 패턴을 찾으면 되는데, 이 패턴은 결국 시계열 분류에서 사용되는 쉐이플릿 개념과 동일하다. 쉐이플릿에 대한 설명은 여기를 참고하기 바란다. 실험 내용 실험 내용은 심플하다. 주가가 크게 오르기 전의 주가 데이터와 그렇지 않은 주가 데이터로 주가 데이터를 분할한 다음에, 쉐이플릿을 찾으면 된다. 말로 쓰니 내용이 어려우니, 코드를 보며 이해..
본 포스팅에서는 시계열 분류에서 사용되는 개념인 쉐이플릿(Shapelet)에 대해 소개하고, 다음 포스팅에서는 쉐이플릿 탐색에 대해 다뤄보도록 한다. 쉐이플릿은 최근 많은 시계열 분석 과제에서 직관적이고 설명 가능하다는 특성덕분에 많은 주목을 받고 있다. 우리 회사에서도 관심을 가지고 있고, 나도 쉐이플릿과 관련된 논문을 준비중이다. 시계열 분류란? 쉐이플릿은 시계열 분류(time series classification)에 사용되는 특징이므로, 시계열 분류에 대해 먼저 소개한다. 시계열 분류는 말그대로 시계열을 분류하는 지도학습 과제로, 샘플이 시계열이라는 것을 빼면 일반적인 분류와 크게 다를 것은 없다. 그러니까 아래 그림에서 왼쪽에 있는 시계열 인스턴스가 입력되면, 이 인스턴스의 라벨이 A인지 B인지..