일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 퀀트
- 데이터 사이언스
- 판다스
- 경력기술서 첨삭
- 주가데이터
- 사이킷런
- 하이퍼 파라미터
- 데이터사이언스
- 주요 파라미터
- 파라미터 튜닝
- 자기소개서
- 대학원
- 데이터 사이언티스트
- 데이터분석
- sklearn
- 코딩테스트
- 데이터사이언스학과
- 랜덤포레스트
- 베이지안 최적화
- AutoML
- pandas
- 주식데이터
- 이력서 첨삭
- 커리어전환
- 머신러닝
- 퀀트 투자 책
- 경력 기술서
- 하이퍼 파라미터 튜닝
- 파이썬
- 데이터사이언티스트
- Today
- Total
목록석사 (2)
GIL's LAB
이번 포스팅에서는 데이터 사이언티스트 관련 채용 공고를 분석하여, 데이터사이언티스트 취업을 위해 필요한 것들을 알아보겠습니다. 분석에 사용한 채용 공고는 21건이며, 신입 혹은 5년 이내 경력직 공고만 사람인과 원티드를 통해 수집했습니다. 채용 공고에서 자격요건과 우대사항을 다음과 같이 정리했습니다. (예시) 마켓컬리 자격요건 • 물류 및 이커머스 도메인에 대한 관심이 많고, ML/DL 모델링에 기반한 프로젝트 실무를 경험하신 분 • 물적/인적 자원의 효율적인 배분 전략 및 최적화 기법, 혹은 마케팅 효율화/타게팅, 개인화 추천/랭킹 모델 등에 관심이 있으신 분 • 중급 이상의 Python, SQL 프로그래밍 역량과 ML 알고리즘과 성능지표에 대한 이해를 갖추신 분 우대사항 • 결과와 과정에 대한 논리적..
데이터 분야 커리어 (데이터 사이언티스트 & 머신러닝/딥러닝 엔지니어)를 시작하려는 분이 가장 많이 물어보는 대학원 관련 질문을 아래와 같이 정리했습니다. Q. 대학원에 반드시 가야하나요? A. 당연하지만 필수는 아닙니다. 학사로 커리어를 시작하는 분도 분명히 계십니다. 그러나 최근에 이쪽 분야의 공급이 늘면서, 학위가 없는 분은 거의 없습니다. 실제로 저희 팀에 있는 사이언티스트와 엔지니어 모두 석사 혹은 박사학위자입니다. 박사는 필수라고 하긴 어렵지만, 석사는 사실상 필수라고 보는 것이 맞습니다. 사견으로는 직장 생활을 하다가 대학원에 진학하기보다, 대학원(석사일지라도)에 진학한 뒤 이 쪽 분야의 커리어를 시작하는 것이 유리합니다. Q. 어느 종류의 대학원에 가야하나요? A. 석사만 할 것인지, 박사..